
// Security Assessment 02.19.2025 - 02.21.2025

Fetch Oracle - Fetch
Oracle Contracts
Updates
Fetch Oracle

Fe t c h O ra c l e - Fe t c h O ra c l e C o n t ra c t s U p d a t e s

Prepared by: HALBORN

Last Updated 03/07/2025

Date of Engagement by: February 19th, 2025 - February 21st, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

8

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

0

INFORMATIONAL

8

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Caveats
5. Static analysis report

5.1 Description
5.2 Output

6. Risk methodology
7. Scope
8. Assessment summary & findings overview
9. Findings & Tech Details

9.1 Improper placement of reserved array
9.2 Managedquery becomes permanent after first value submission
9.3 Missing error descriptions
9.4 Incorrect natspec documentation
9.5 Missing events
9.6 Consider using flexible pragma for contract interfaces
9.7 Unused function

1 0 0%

9.8 Modified openzeppelin contracts

1 . I n t r o d u c t i o n

Fetch Oracle engaged Halborn to conduct a security assessment on their smart contracts
beginning on February 19th, 2025 and ending on February 21st, 2025. The security assessment was
scoped to the smart contracts provided to Halborn. Commit hashes and further details can be found
in the Scope section of this report.

The Fetch Oracle codebase in scope consists of updates made to a set of smart contracts designed
to act as a decentralized oracle protocol.

2. A s s e s s m e n t S u m m a r y

Halborn was provided 3 days for the engagement and assigned 1 full-time security engineer to
review the security of the smart contracts in scope. The engineer is a blockchain and smart contract
security expert with advanced penetration testing and smart contract hacking skills, and deep
knowledge of multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the smart contracts.
Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks,
which were mostly acknowledged by the Fetch Oracle team. The main ones are the following:

Implement consistent price validation across all query types.
Update NATSPEC comments in the the removeManagedQuery() function or implement a

deprecation system to remove managed queries.
Move the __reserved array declaration to the end of all storage variable

declarations.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual review of the code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of this assessment.
While manual testing is recommended to uncover flaws in logic, process, and implementation;
automated testing techniques help enhance coverage of smart contracts and can quickly identify
items that do not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

Research into architecture, purpose and use of the platform.
Smart contract manual code review and walkthrough to identify any logic issue.
Thorough assessment of safety and usage of critical Solidity variables and functions in scope

that could led to arithmetic related vulnerabilities.
Local testing.
Static analysis of security for scoped contract, and imported functions (Slither).

4. C a v e a t s

The current security review was focused solely on evaluating the changes introduced between a
previous assessment from Halborn and the current state of the files (a diff assessment). While this
review aimed to provide a comprehensive evaluation of the protocol's security posture, it is important
to consider this limitations when interpreting the findings and recommendations.

5. S t a t i c A n a l y s i s R e p o r t

5.1 D e s c r i p t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After
Halborn verified the smart contracts in the repository and was able to compile them correctly into
their abis and binary format, Slither was run against the contracts. This tool can statically verify
mathematical relationships between Solidity variables to detect invalid or inconsistent usage of the
contracts' APIs across the entire code-base.

5.2 O u t p u t

There were no findings that matched the scope of this assessment.

6. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a
Severity Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring
System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical
means by which vulnerabilities can be exploited and Impact describes the consequences of a
successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as
the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of
risk to address the most critical issues in a timely manner.

6.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational
cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and
regulatory challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

6.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due
to a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users
only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

M E

E

E = m ∏ e

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

6.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

M I

I

I = max(m) +I

4
m − max(m)∑ I I

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

C

r

s

C

C = rs

S

S = min(10,EIC ∗ 10)

SEVERITY SCORE VALUE RANGE

Informational 0 - 1.9

7. S C O P E

F ILES AND REPOSITORY

(a) Repository: fetch-contracts

(b) Assessed Commit ID: 3fbd55f

(c) Items in scope:

contracts/Autopay.sol
contracts/FetchFlex.sol
contracts/FetchToken.sol
contracts/Governance.sol
contracts/QueryDataStorage.sol
contracts/usingfetch/UsingFetch.sol
contracts/usingfetch/UsingFetchUpgradeReady.sol
contracts/interfaces/IERC20.sol
contracts/interfaces/IFetch.sol
contracts/interfaces/IFetchFlex.sol
contracts/interfaces/IFetchToken.sol
contracts/interfaces/IOracle.sol
contracts/interfaces/IERC2362.sol
contracts/interfaces/IMappingContract.sol
contracts/interfaces/IQueryDataStorage.sol

Out-of-Scope: Third party dependencies and economic attacks.

Out-of-Scope: New features/implementations after the remediation commit IDs.

8 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

0

INFORMATIONAL

https://github.com/fetchoracle/fetch-contracts

8

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

IMPROPER PLACEMENT OF RESERVED ARRAY INFORMATIONAL
ACKNOWLEDGED -

02/27/2025

MANAGEDQUERY BECOMES PERMANENT AFTER
FIRST VALUE SUBMISSION

INFORMATIONAL
ACKNOWLEDGED -

02/27/2025

MISSING ERROR DESCRIPTIONS INFORMATIONAL
FUTURE RELEASE -

02/27/2025

INCORRECT NATSPEC DOCUMENTATION INFORMATIONAL
FUTURE RELEASE -

02/27/2025

MISSING EVENTS INFORMATIONAL
FUTURE RELEASE -

02/27/2025

CONSIDER USING FLEXIBLE PRAGMA FOR
CONTRACT INTERFACES

INFORMATIONAL
FUTURE RELEASE -

02/27/2025

UNUSED FUNCTION INFORMATIONAL
FUTURE RELEASE -

02/27/2025

MODIFIED OPENZEPPELIN CONTRACTS INFORMATIONAL
FUTURE RELEASE -

02/27/2025

9 . F I N D I N G S & T EC H D E TA I L S

9 .1 I M P RO P E R P L AC E M E N T O F R ES E RV E D A R R AY

// INFORMATIONAL

Description
In the FetchFlex contract, the __reserved storage array for future upgrades is declared in the middle
of the contract's storage variables, specifically between managedReporters and
timeOfLastDistribution.

According to best practices for upgradeable contracts, reserved storage slots should be placed at the
end of all storage variable declarations to maintain a clean and organized storage layout.

While this does not affect current functionality, placing reserved slots in between storage variables
makes the contract's storage layout less maintainable and could lead to confusion and potential
issues when implementing future upgrades.

BVSS

AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:L/D:N/Y:N (1.3)

Recommendation
Move the __reserved array declaration to the end of all storage variable declarations, after
timeOfLastDistribution. This maintains a clearer separation between active storage variables and
reserved slots for future use.

Remediation Comment

ACKNOWLEDGED: The Fetch Oracle team made a business decision to acknowledge this finding and
not alter the contracts, stating that:

"We understand that current placement is not in line with best practice placement (at the end of
declarations). Given there is no impact on functionality we will leave the variable placement as is for
now."

References
fetchoracle/fetch-contracts/contracts/FetchFlex.sol#L43

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/FetchFlex.sol#L43

9 . 2 M A N AG E D Q U E RY B EC O M ES P E R M A N E N T A F T E R F I RST

VA L U E S U B M I S S I O N

// INFORMATIONAL

Description
The removeManagedQuery() function in FetchFlex has a limitation: it can only be executed before any
values are submitted to the query feed. This is because the function requires that
reports[_queryId].timestamps.length == 0, but the timestamps array only grows and is never
cleared throughout the contract's lifecycle.

This creates a permanent state where managed queries cannot be removed once they become active,
as the first value submission permanently blocks the removal functionality. While this could be an
intentional security feature to prevent tampering with historical data, it's not clearly documented and
could lead to governance confusion.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N (0.6)

Recommendation
If the current behavior is intentional, update the contract to clearly document this limitation in the
NatSpec comments of the removeManagedQuery() function, explaining that managed queries become
permanent once the first value is submitted.

To allow removal of managed queries after initial use, consider implementing a deprecation system
where queries can be first marked as inactive (preventing new submissions) and then removed after a
safety timelock period to provide flexibility for managing outdated feeds while preserving historical
data integrity.

Remediation Comment

ACKNOWLEDGED: The Fetch Oracle team made a business decision to acknowledge this finding and
not alter the contracts, stating that:

"This is the intended design since once a query is set as a managed feed and a price is reported to
it, the query id must remain as a managed feed to avoid any misuse or misunderstanding with the
community (non-managed feed) reporters."

References
fetchoracle/fetch-contracts/contracts/FetchFlex.sol#L945-L953

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/FetchFlex.sol#L945-L953

9 . 3 M I S S I N G E R RO R D ES C R I P T I O N S

// INFORMATIONAL

Description
The onlyManager() modifier in the FetchFlex contract reverts if the msg.sender is not the manager
if the queryId provided, but the error message is not provided.

Similarly, in the _updateStakeAndPayRewards() function of the same contract, the function fails
when the token transfer fails but an error message is not provided.

This can make it difficult for users and developers to understand why a transaction failed and how to
resolve the issue.

Score

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Add an error message to provide more information about the reason for the revert.

Remediation Comment

FUTURE RELEASE: The Fetch Oracle team made a business decision to acknowledge this finding and
not alter the contracts, stating that:

"We have built off chain tooling that integrates with the contract and provides sufficient end user
error messages. However, we may add revert messages directly in the contract in a future upgrade."

References
fetchoracle/fetch-contracts/contracts/FetchFlex.sol#L74-L77
fetchoracle/fetch-contracts/contracts/FetchFlex.sol#L1088

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/FetchFlex.sol#L74-L77
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/FetchFlex.sol#L1088

9 . 4 I N C O R R EC T N ATS P EC D O C U M E N TAT I O N

// INFORMATIONAL

Description
The verify() function in the FetchFlex contract has a misleading NatSpec documentation. The
comment states "return bool value used to verify valid Fetch contracts", but the function actually
returns a uint256 value.

This inconsistency between documentation and implementation could mislead developers integrating
with or maintaining the contract.

Score

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Update the NatSpec documentation to accurately reflect the function's return type and purpose.

Remediation Comment

FUTURE RELEASE: The Fetch Oracle team made a business decision to acknowledge this finding and
not alter the contracts, stating that:

"We will update the comments to accurately reflect the function's return type and purpose in a
future upgrade."

References
fetchoracle/fetch-contracts/contracts/FetchFlex.sol#L924

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/FetchFlex.sol#L924

9 . 5 M I S S I N G EV E N TS

// INFORMATIONAL

Description
In the FetchFlex contract, there are instances where administrative functions change contract state
by modifying core state variables. However, these changes are not reflected in any event emission.

Instances of this issue can be found in:

FetchFlex.setupManagedQuery()
FetchFlex.removeManagedQuery()
FetchFlex.addReporter()
FetchFlex.removeReporter()

Score

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Emit events for all state changes that occur as a result of administrative functions to facilitate off-
chain monitoring of the system.

Remediation Comment

FUTURE RELEASE: The Fetch Oracle team made a business decision to acknowledge this finding and
not alter the contracts, stating that:

"We will emit events for all state changes that occur as a result of administrative functions to
facilitate off-chain monitoring of the system in a future upgrade."

References
fetchoracle/fetch-contracts/contracts/FetchFlex.sol#L936-L967

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/FetchFlex.sol#L936-L967

9 . 6 C O N S I D E R U S I N G F L E X I B L E P R AG M A FO R C O N T R AC T

I N T E R FAC ES

// INFORMATIONAL

Description
Several interface contracts in the codebase use strictly locked pragma versions (0.8.3) or overly
flexible (>= 0.8.0).

While locked pragma versions are a best practice for implementation contracts, for interfaces that
are meant to be widely reused, a more flexible pragma version (within the major version, e.g. 0.8)
allows consuming contracts to implement the interface regardless of their fixed Solidity version.

Score

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Consider using caret pragma (^) for interfaces to specify compatibility while allowing minor version
updates:

pragmapragma soliditysolidity ^̂0.8.00.8.0;;

For more reference, see this discussion or this recommendation.

Remediation Comment

FUTURE RELEASE: The Fetch Oracle team made a business decision to acknowledge this finding and
not alter the contracts, stating that:

"We will update interface contract pragma in a future upgrade."

References
fetchoracle/fetch-contracts/contracts/interfaces/IERC20.sol#L2
fetchoracle/fetch-contracts/contracts/interfaces/IERC2362.sol#L2
fetchoracle/fetch-contracts/contracts/interfaces/IFetch.sol#L2
fetchoracle/fetch-contracts/contracts/interfaces/IFetchFlex.sol#L2
fetchoracle/fetch-contracts/contracts/interfaces/IFetchToken.sol#L2
fetchoracle/fetch-contracts/contracts/interfaces/IMappingContract.sol#L2
fetchoracle/fetch-contracts/contracts/interfaces/IOracle.sol#L2
fetchoracle/fetch-contracts/contracts/interfaces/IQueryDataStorage.sol#L2

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://forum.openzeppelin.com/t/why-is-there-a-restrictive-pragma-on-interfaces-in-the-5-0-2-release/41311
https://consensys.github.io/smart-contract-best-practices/development-recommendations/solidity-specific/locking-pragmas/
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/interfaces/IERC20.sol#L2
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/interfaces/IERC2362.sol#L2
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/interfaces/IFetch.sol#L2
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/interfaces/IFetchFlex.sol#L2
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/interfaces/IFetchToken.sol#L2
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/interfaces/IMappingContract.sol#L2
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/interfaces/IOracle.sol#L2
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/interfaces/IQueryDataStorage.sol#L2

9 .7 U N U S E D F U N C T I O N

// INFORMATIONAL

Description
The getQueryConfig() function of the FetchFlex contract is declared with the internal visibility
modifier but it is not called within the contract.

Score

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Consider updating the visibility of the getQueryConfig() function to external if it is intended to be
called by other contracts or users. Alternatively, call the function from the submitValue() function
replacing the redundant code to verify if the queryId requires staking.

Remediation Comment

FUTURE RELEASE: The Fetch Oracle team made a business decision to acknowledge this finding and
not alter the contracts, stating that:

We will update function visibility to external in a future upgrade.

References
fetchoracle/fetch-contracts/contracts/FetchFlex.sol#L993-L997

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/fetchoracle/fetch-contracts/blob/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/FetchFlex.sol#L993-L997

9 . 8 M O D I F I E D O P E N Z E P P E L I N C O N T R AC TS

// INFORMATIONAL

Description
All files in the dependencies/utils directory contain modifications from the original OpenZeppelin
contracts (upgradeable contracts are using version 4.9.3 according to package.json but
EnumerableSet is taken from version > 5.0.0).

While these changes appear not to introduce any vulnerabilities, it is important to note that the
contracts have been modified, introducing inconsistencies with widely tested standard
implementations.

Score

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Consider using the original OpenZeppelin contracts without modifications to reduce the risk of
vulnerabilities or bugs being introduced.

Additionally, consider replacing the TransferHelper contract with the SafeERC20 contract from
OpenZeppelin to ensure the safe transfer of ERC20 tokens with dependencies consistency across the
codebase.

Remediation Comment

FUTURE RELEASE: The Fetch Oracle team made a business decision to acknowledge this finding and
not alter the contracts, stating that:

"We will update OpenZeppelin contracts to v5.2.x and use installed dependencies using NPM in a
future upgrade."

References
fetchoracle/fetch-contracts/tree/3fbd55fe6932a9b386750fc357f156854bd0ed68

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is crucial for
maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/fetchoracle/fetch-contracts/tree/3fbd55fe6932a9b386750fc357f156854bd0ed68/contracts/dependencies/utils

